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➢Backpropagation-through-time (BPTT) assigns 
temporal credit but scales with timesteps 𝑇, 
inflating memory and compute in SNNs. We 
want a temporal-local rule that preserves rich 
spike-timing cues while avoiding BPTT’s 
unfolding.

Method Overview

S-TLLR is a three-factor 
update: an instantaneous 
eligibility trace that 
blends causal (pre→post) 
and non-causal 
(post→pre) terms, 
modulated by a global 
learning signal 𝛿[𝑡] (via 
BP-through-layers or DFA). 
No time-unrolling or state 
per-synapse is kept.
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Key Ideas

➢ Temporal locality: forward-only computation; 
time-constant memory O(n).

➢ Balanced timing: 𝛼𝑝𝑟𝑒 (causal) + 𝛼𝑝𝑜𝑠𝑡 

(non-causal) improves generalization.
➢ Flexible 𝜹: BP/DFA at layer level; late 𝛿

reduces MACs with minor accuracy impact.

Advantages Over Existing Techniques

➢ Time-local updates: no gradient backprop 
through time.

➢ Lower Memory: O(n) vs O(T·n) activations for 
BPTT.

➢ Task-adaptive timing: tune 𝛼𝑝𝑜𝑠𝑡 sign for 

spatial vs temporal tasks.

Takeaways

➢ Competitive accuracy with markedly reduced 
memory (up to 10 ×).

➢ Late learning signal yields 1.3– 6.6 × fewer 
MACs.

➢ Simple to implement; works for feedforward, 
CNN, and recurrent SNNs.

Motivation Experiments

S-TLLR matches or surpasses 
BPTT on event-vision and 
audio benchmarks while 
using far less memory; late 
𝛿 further reduces compute.
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Table 3. Comparison with learning methodsTable 1. Effects of including the non-causal terms in the eligibility traces

Table 2. Accuracy performance of methods on vision and audio datasets

Eligibility trace function

Temporal-local rule 
→ constant memory 
footprint, enabling 
long-sequence 
training on resource-
limited hardware.


	Slide 1

